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Abstract

In recent yeas the development of computational techniques that build models to corredly assgn
chemicd compounds to various classes or to retrieve potential drug-like compound has been an adive
areaof reseach. These techniques are used extensively at various phases during the drug development
process Many of the best-performing techniquesfor thesetasks, utili ze adescriptor-based representation
of the compoundthat captures various aspeds of the underlying moleaular graph's topdogy. In this
paper we introduce and describe dgorithms for efficiently generating a new set of descriptors that are
derived from all conneded agyclic fragments present in the moleaular graphs. In addition, we introduce
an extension to existing vedor-based kernel functions to take into acourt the length of the fragments
present in the descriptors. We experimentally evaluate the performance of the new descriptors in the
context of SVM-based clasdficaion and ranked-retrieval on 28 clasdficaion and retrieval problems
derived from 17 datasets. Our experiments show that for both the dassficaion andretrieval tasks, these
new descriptors consistently and statisticdly outperform previously developed schemes based on the
widely used fingerprint- and Maccs keys-based descriptors, as well as recently introduced descriptors
obtained by mining and analyzing the structure of the moleaular graphs.

1 Introduction

Discovery, design and development of new drugs is an expensive and challenging process Any new drug
shoud nat only produce thedesred regporse to thadiseasebut shoud do so with minimal side défeds. One
of thekey steps in thedrug design processis the identification of the diemical compounds (hit compounds
or just hits) tha display the desred and reprodicible behavior againg the gedfic biomolecular target [22].
This represants a significant hurdle in the ealy stagesof drug dscovery. Therefore, computational tech-
niques tha build models to corredly assign chemical compounds tovarious dassesor retrieve mmpounds
of desred classfrom a databasehave become popuar in the pharmaceutical industry.



Over thelast twenty yeas extensive reseach hasbeen carried ou to identify representations of molec-
ular graphs thd can buld goodclasdfication models or retrieve adivesfrom a database in a eff edive way.
Towards this goal, anumber of different approacheshave been developed that represent eady compound by
a sea of desciptors tha are baseal onfrequency, physiochemical properties aswell as tgpological and geo-
metric substructures(fragments) [1,3,6,8,13,28—-3036]. Historically, thebed performing and most widely
usad desciptors have been basel onfingerprints, which represent ead molecular graph by a fixed length
bit-vecta derived by enumerating all bounced length cycles and paths in thegraph (e.g., Daylight [29]), and
on sds of fragments tha have been identified a priori by daman experts (e.g., Maccskeys[30]). However,
in recent yeas, reseach in the data mining community hasgenerated new classesof desciptors basal on
frequently occurring substructures[8] and sdected cycles & trees[13] tha have been shown to adieve
promising reaults.

In this paper, we build on the eperience gained from this ealier work and introduce anew sd of
fragment-basal desciptors tha are designed to better cgpture theunderlying structure of molecular graphs.
Thesedesciptors ae derived from al conneded agyclic fragments (AF) present in the graphs and ther
length (number of bonds) is constrained nd to exceed a usa-supgied parameter. We present an efficient
algorithm for finding thesedesciptors and study ther eff edivenessfor the tasks of building classficaion
models and d retrieving adive compounds from a chemical compoundlibrary. Within the ontext of these
tasks we dso study the dfedivenessof different desciptor-basel similarity measuresfor both deriving
kernel functions for SV M-basel clasdficaion and for ranked-retrieval.

To assess theffedivenessof the new classof desciptors we perform a comprehensive experimental
study using 28 dfferent classficaion and retrieval problems derived from 17 detases containing up to
78,995 compounds. Our study compares theperformance adieved by the agclic fragmentsto tha achieved
by previously developed schemes (fingerprints [14], Maccskeys [30], frequent sub-structures[8], Cycles &
Trees[13]) aswell astwo subsds of AF, one mntaining the fragments that form paths(PF) and the other
containing the fragments tha form trees(TF).

Our experiments show tha for both the dassfication and the retrieval tasks, the AF desgiptors mnsis-
tently and statistically outperform al previously developed schemes. Moreover, akernel function introduced
in this paper tha takes into acourt thelength of thefragments present in the sé of desciptorslead to better
overal reallts, epedally when used with the AF desciptors.

The red of the paper is organized asfollows. Sedion 2 provides ®me badkground onthe mdecular
graphrepresentation of chemical compounds. Sedion 3 desaibes theprevioudy developed desciptors used
in our experimental evaluaion. Sedion 4 provides adetailed desciption of the desciptors introduced in
this paper. Sedion 5 provides adetailed desciption of thevarious kernel functions used. Sedion 6 contains
experimental evaludion of the different desciptors and also provides ®me trends and analyss from the
experiments. Sedion 7 provides @ncluding remarks on this work.



2 Representation of Chemical
Compounds

In this paper we represeant ead compound byits correpondng maecular graph [19]. The verticesof these
graphs mrrepondto the various atans (e.g., cabon nitrogen, oxygen, etc.), and the alges orregpond
to the bonds between the atans (e.g., single, doulde, etc.). Ead of the vertices and edges has alabel

as®ciated with it. The labels on the vertices @rregpondto the type of atams and the labels on the alges
correpondto the type of bonds. The vertex labels (atam typing) and edge labels (bondtyping) used in

this paper for al the input chemical graphs and desciptors generated from them (except fingerprints and
Maccskeys) is thedefault typing used by Babel [23]. We goply two commanly used structure normdization

transformaions [22]. First, we label al bonds in aométic rings asaromatic (i.e., a different edge-label),

and semnd, we remove thehydrogen atomsthat are wnreded to cabonatams (i.e., hydrogen-suppresse

chemica graphs). To generate fingerprints and Maccskeys we use theSmiles [29] represantation as an

input.

3 Overview of Existing Fragment-Based Descriptor Spaces

In this sedion, we briefly deseibe some of the most popuar aswell asrecantly introduced approaches to
extrad fragment-basel descaiptors from moecular graphs.

3.1 Fingerprints

Fingerprints[29] are usal to encode dructural charaderistics of a chemical compoundinto afixed hit vecta
and are usal extensively for varioustasks in chemical informatics. Thesefingerprints are typically generated
by enumerating al cycles and linea pathsup to agiven number of bonds and hashing ead of these gcles
and paths into &fixed bit-string. The edfic bit-string tha is generated depends on the number of bonds,
the number of bits that are se, the hashing function, and the length of the bit-string. A desrable property
of thefingerprint-baseal desciptorsis tha they encode avery large number of sub-structures into a ompad
representation. We will refer to thesedeseiptors asfp-n where n is the number of bits tha are use.

3.2 MaccsKeys(MK)

Molecular Design Limited (MDL) creaed the key basel fingerprints (MaccsKeys) [30] basel on pettern
matching of a dhemical compound structure to apre-defined se of structural fragments tha have been
identified by daman experts[9]. Each such structural fragment beaomes akey and accupies afixed paosition
in the desciptor space Therefore, this approad relies on pre-defined rules to encgpsulate the molecular
desciptions apriori and deesnat learn them from the diemical datase.



This desciptor spaceis natably different from fingerprint basel desciptor space Unlik e fingerprints, no
folding (hadhing) is performed onthe aib-structures The advantage of such an approach over fingerprints is
tha sub-structuresof arbitrary topology can form a part of thedesciptor space Moreover, therules seected
encode doman knowledge in a @mpad desciptor space But it also has adisadvantage of potentially not
being able to adapt to the daraderistics for a particular dataset and classfication problem. We will refer to
this desciptor space asMK.

3.3 Cyclicpatternsand Trees (CT)

Horovath et al [13] developed a method tha is basal on representing every compoundas a seof cycles
and certain kinds of trees In particular, the ideais to identify all the biconreded components (blocks) of
a chemical graph. Once thesdlocks ae idantified, thefirst s of featuesis generated by enumerating up
to a cetain number of simple cycles (boundd cyclicity) for the blocks. Once the gcles ae identified, all
the blocks of the dhemical graph are deleted. The reaulting graph is a mllection of leftover treesforming
afored. Eadc such treeis usal as adesciptor. The final desciptor spaceis the union of the g/cles and
leftover trees The treepatterns used in this representation are of a gedfic topdogy and size thda depends
onthepasition of blocks in the diemical graph. We will refer to this desciptor space asCT.

3.4 Frequent Sub-structures based Descriptor Space (FS)

A number of methods have been propcseal in recent yeas to find frequently occurring sub-structures in
a chemical graph database[4, 15, 21, 37]. Frequent sub-structures of a chemical graph dcetabaseD are
defined as dl sub-structures tha are present in at leag o|D|% of compounds of the database where o is the
minimum frequency requirement (also cadled minimum suppat constraint). Thesefrequent sub-structures
can be usal as desciptors for the mmpounds in tha database One of the important properties of the
sub-structuresgenerated, like MaccsKeys, is tha they can have abitrary topology. Moreover, every sub-
structure generated is conneded and frequent (asdetermined by the minimum suppat constraint o).

Descaiptor spaceformed ou of frequently occurring sub-structuresdepends onthevalueof o. Therefore,
unlike theMaccskeys, thedesciptor space ca change for a particular problem instanceif thevalueof o is
changed. Moreover, unlike fingerprints, all frequent subgraphs irrepedive of ther size (number of bonds)
form thedesciptor space A potential disadvantage of this methodis tha it is unclear how to sdect a auitable
valueof o for a given problem. A very high valuewill fail to discover important sub-structureswhereas a
very low valuewill reallt in combinatarial explosion of frequent subgraphs. We will refer to this desaiptor
space ag=S.



4 Acyclic, Treeand Path
Fragments (AF, TF, and PF)

A caeful analyss of the four desciptor spacesdescibed in Sedion 3 illustrate four dimensions alang

which these shemes compare with eat other and represent some of the doices tha have been explored in

designing fragment-basel (or fragment-derived) desgciptors for chemical compounds. The first dimension

is as®ciated with weathe the fragments are determined diredly from thedatase at hand o they have been

pre-identifi ed by daman experts. Maccskeysis an example of adesciptor spacewhosefragments have been

determined apriori whereas in # other schemes, thefragments are determined diredly from thedatase. The
seond dmension is as®ciated with the tgpological complexity of the actuafragments. On ore sideof the
spedrum, schemes lik e fingerprints userathe simple topdogies consisting of cycles and paths whereas &
theother end d the edrum, the frequent sub-structure-basel desciptors dlow fragments tha corregpond
to arbitrarily conreded subgaphs. The thrd dimension is as®ciated with weathe or nat the fragments
are being predsely represanted in the desciptor space Fingerprint-basel desciptors, due to thehasing

approach tha they use lead to impredse representations, whereas theother three stiemes ae predse in

the sese tha there is a one-to-one mapping between fragments and dmensions of the desciptor space

Finally, the fourth dimension is as®ciated with the aility of the desciptor space to over dl (or nealy

al) of thedatasd. Desciptor spaces ceaed from fingerprints and cycles & trees ae guaranteed to contain

fragments or hashed fragments from ead ore of the mmpounds. On the other hand, desciptor spaces
corregpondng to Maccskeys and frequent sub-structuresmay lead to a desciptor-basel representation of

the dataset in which some of the mmpounds have no (or a very smdl number) of desciptors. Desaiptor

spaces thaare determined dyramically from the datasd, use fragments with complex topologies, lead to

predse represeatations, and have ahigh degreeof coverage ae expeded to perform better in the @mntext of

chemical compound classgfication and retrieval as thg alow for a better representation of the underlying

compounck.

In this sedion we introduce and descibe algorithmsfor efficient generation of a new desciptor space
that we believe better cgptures thededred charaderistics alang the dowve four dimensions. This desciptor
space onsistsof al conreded agyclic fragments up to agiven length [ (i.e., number of bonds) tha exist in
the datase at hand. The desciptor spaceis determined dynamically from the datasd, the tqoogy of the
fragments that it allows ae trees ad paths leads to apredse represeantation, and has100% coverage. We
will refer to this desciptor space asAcydic Fragments (AF).

In addition, we dso derive two other sds of fragments from the se of al agyclic fragments. The first,
termed asTree Fragments (TF), is the @llection of al fragmentstha have & leag one node of degreegreaer
than two. This s formsall thetreefragments. The seondsd, cdled Path Fragments (PP, is just the sé
of linea pathswhere thedegreeof every noce in every fragment is less tha or equal to two. Note that AF
=TFUPFand TFU PF= (.

Note that Path Fragments are exadly the sane patterns as thdinea paths infingerprints. Moreover,



any frequent sub-structure baseal desciptor spaceis a superse of Acyclic-Fragments when the minimum
suppat threshadd (o) is low enoughto generate frequent subgraphs having a frequency of one.

4.1 Efficient Generation of Acyclic Fragments

To generate all conreded agyclic fragments, we developed an algorithm tha was ingired by thereaursive
technique for generating all the ganning treesof agraph G [34].

Conside an arbitrary edge e of GG, and let S.(G) be the seof spanning treesof G tha contain e and
S_¢(G) be the seof dl spanning treesof G tha do nd contain e. Itis eay to see tha(i) S.(G)NS-.(G) =0
and (i) S.(G) U S-.(G) is equal to the se¢of al spanning treesof G, denoted by S(G). Now, if S(G/e)
denotes an edge mntraction operation (i.e., thevertices incidat on e are wllapsed togethe) then S, (G) can
be obtained from S(G/e) by adding e. If G\ e denctes an edge deletion operation, then S-.(G) is nothing
more than S(G\e). From the dowve obsavations we can come up with thefollowing reaurrencerelation for
generating S(G)

S(G) =

{@, if G doesnat have any edge o

eS(G/e) U S(G\e), othewise,

where e is an arbitrary edge of G, andeS(G/e) denates the seof al spanning treesobtained by adding e to
eat spanning tree inS(G/e).

The reaurrence relation of Equation 1 can be used to generate all the @mnreded agyclic fragments of a
cetain length [ by maodifying it in two different ways. Thesemaodifi cations ae needed to ensure tha (i) the
agyclic fragments tha are returned are conreded, and (ii) only all the fragments of length [ are returned.
The first can be adieved by imposing the nstraint that the elge e must be incident on a vertex of G that
wasobtained via an edge contradion operation, if such a vertex exist. If G doesnat have any such vertex
(i.e., it correponds to theoriginal graph), then e is sdected in an arbitrary fashion. The length requirement
can be ensured by terminating the reaurrence relation when exadly | edgeshave been sdected. In light of
thesemadifi caions, thenew reaurrencerelation that generates dl the mnneded acyclic fragments of length
[, denated by F'(G, 1) is given by

0, if G hasfewer than! edgesor ! = 0
F(G,1) = )

eF(G/e,l —1)U F(G\e,l), otherwise,

where e is sdisfies the Aove mnstraints.

5 Kernd Functionsfor chemical compound classification

Given thedesaiptor space eah chemical compoundcan be represetted by avecta X whosei* dimension
will have anonzero valueif the @mpoundcontains tha desciptor and will have avalueof zero otherwise.



Thevaluefor ead desciptor thd is present can be dther one, leading to avecta represeantation tha cegptures
presenceor absenceof thevarious desciptors (referred to asbinary vectas) or thenumber of times tha eat
desciptor occurs in the ®ompound leading to arepresentation tha aso captures thefrequency information
(referred to asfrequency vectas).

Given the dowe vecta represeantation of the diemical compounds, the dasdfication algorithmsthat we
develop in this paper use sippat vecta machines(SVM) [32] as theunderlying learning methoddogy, as
they have been shown to be highly eff edive, eedally in high dimensional spaces

One of the key parameters tha affeds the performance of SVM is the doice of the kernd function
(K0), tha meadures the snilarity between pairs of compounds. Any function can be usal as akernd as
long as for any number n and any possille se of distinct compounds { X1, ..., X, }, then x n Gram
matrix defined by C; ; = K(X;, X;) is symmeéric positive senidefinite. Thesefunctions ae said to stisfy
Mercer's aondtions and are cdled Mercer kernels, or simply valid kernels.

In this paper we usetwo different classesof kernel functions thd are derived from thewidely used RBF
kernel function, and the lesswidely used Tanimoto coefficient® [2,3,5,35. The Tanimoto coefficient was
sdected becaiseit is usel extensively in cheminformatics and hasbeen shown to be an effedive way to
measure the gmilarity between chemical compound airs[36].

Given the vecta represeantation of two compounds X and Y, the RBF and Tanimoto kernd functions

are given by X7

,Crbf(Xa Y) = exp( 202

) 3

M

> min(zi, yi)

Kim(X,Y) = @)

221 maz (s, Yi)
where o is ause suppied parameter andthetermsz; andy; are thevalues alagthei*” dimension of the X
andY vectas, repedively. Note tha in the casef binary vectas, thesewill be dther zero or one, whereas
in the casef frequency vectas thesewill be equal to thenumber of times the:*" deseiptor existsin thetwo
compounds. Moreover, note tha Tanimoto kernel is avalid kernel asit hasbeen shown to sdisfy Merce’s
condtions[2§].

One of the patential problemsin using the @owe kernels with desaiptor spaces thacontain fragments
of different lengthsis tha they contain no mechanism to ensure tha desciptors of various lengths cntribute
in anontrivial way to the mmputed kernel function values This is egedally true for the AF, TF, and PF
desciptor spaces inwhich eat compoundtends to have amuch larger number of longer length fragments
(e.0. length six and seven) than shorter length (e.g. length two and thre€). To overcome this problem we

modified the dowve kernel functions to give equal weight to the fragments of ead length. In the @ntext

1We dso experimented with the linea kernel function but the results were worse that either RBF or Tanimoto, so we ae not
including them here.



of the RBF kernel function, this is obtained asfollows. Let X' and Y be thefeatue vectas of X and
Y with reged to only the featuesof length [, and let L be thelength of the larged featue. Then, the
length-differentiated RBF kernel function ICbe(X, Y') is given by

L
rbf = Z rbf Xl (5)
=1
The length-differentiated kernels for Tanimoto is derived in a gmilar fashion. We will refer to these as the
length-differentiated kemel functions, andwewill refer to theones thado na differentiate between different
length fragments aspoded kemel functions.

In summay, we studied four different flavors for ead kernel functions, one thd is binary and poded,
frequency and poded, binary and length-differentiated and frequency and length-differentiated. We will
follow the cnvention of using the gymbols K, £, £}, and K% to refer to binary and poded, frequency
and poded, binary and length-differentiated and frequency, and length-differentiated kernel functions, re-
spedively.

6 Resaults

6.1 Datasets

The performance of thedifferent desciptors and kernel functions was assessieon 28 dffferent clasdfication
problemsfrom 17 dfferent datases.

The dze, distribution and compound charaderistics of the 28 clasdficaion problemsare shown in Ta
ble 1. Each of the 28 classficaion problemsis unique in thd it hasdifferent distribution of positive dass
(ranging from 1% in H2 to 50% in C1), different number of compounds (ranging from the sndlest with 559
compounds tolargeg with 78,995 compounds) and compounds of different average dzes(ranging from the
14 atoms per compoundto 37 atoms per compound onan average in C1 and H3 regedively).

The first datasd is a part of the Predictive Toxicology Evalugion Challenge [27]. There ae four clas-
sificaiion problems one wrrepondng to ead of the rodents MaleRats, FemdeRats, MaeMice and Fe-
mdeMice andwill bereferred asP1, P2, P3, and P4.

The seond dhtasd is mutagenicity data from [12]. The compounds in this datasd are dassfied as
mutagens or normutagens asdetermined by the Salmomlla/microsome assg. We will refer this datase as
CL

The third datasd is obtained from theNational Cancer Institutes sDTP AIDS Anti-vira Screen program
[20,26]. Three dasdficaion problems are formulated ou of this datase. The first problem is designed to
clasdgfy between CM+CA and CI; the seond between CA and CI, and the third between CA and CM. We
will refer to thesgproblemsasH1, H2, and H3, regedively.

The fourth datase was obtained from the Center of Computational Drug Discovery’s anthrax project



Table 1: Properties of clasdficaion problemsand Datasds.
D N N+ Ny NA+ Na_ Np NB+ Np_
NCI1 39001 1881 26 34 25 28 37 27
NCI109 39168 1893 26 34 25 28 37 27
NCI123 39497 2885 26 32 25 28 34 27
NCI145 38665 1786 26 34 25 28 37 27
NCI167 78995 9416 21 24 21 22 25 22
NCI220 866 282 24 24 25 26 25 26
NCI33 38649 1500 26 35 25 28 38 27
NCI330 41152 2266 22 28 21 23 30 23
NCl41 26425 1395 26 35 26 28 38 28
NCI47 38922 1840 26 34 25 28 37 27
NCI81 39199 2201 26 33 25 28 36 27
NCI83 26636 2092 26 33 25 28 35 28

H1 42389 1498 27 37 26 29 39 28
H2 41313 422 27 43 26 29 45 28
Al 34836 12376 25 25 25 25 25 25
H3 1498 422 37 43 34 39 45 37
D1 1309 116 24 27 23 25 28 25
D2 1305 112 24 25 23 25 27 25
D3 1501 308 26 36 23 28 38 25
D4 1728 536 26 32 23 28 34 25
P1 567 212 18 17 19 19 18 20
P2 574 164 19 17 19 19 18 20
P3 572 193 18 16 19 19 17 20
P4 559 170 18 17 19 19 17 20
C1 640 320 14 13 15 14 14 15
M1 1596 285 16 14 16 16 15 17
M2 1596 172 16 13 16 16 14 17
M3 1596 88 16 13 16 16 13 17

N isthetotal number of compoundsin the dataset. N+ isthe number of positivesin the dataset. N4 and N are the average number of atomsand
bondsin ead compound N 4 isthe average number of atomsin ead compound kelongngto the positive dassand IV 4 — isthe average number
of atomsin eat compound kelongng to the negative dass Similarly Ng and Np_ arethe correspondng numbers for bonds. The numbers are
rounckd off to the neaest integer.

at the University of Oxford [25]. The dasdficaion problem for this datasd is: given a chemical com-
poundclassfy it in to one of thesetwo classesi.e., will the mmpound bnd the aithrax toxin or not. This
clasdfication problem is referred asAl.

A fifth datasd is provided by Dr. lan Watson from Eli Lilly Inc. andis descibed in [33]. Each drug
compoundin this datase is marked asOral (O), Topica (T), Absorbent (A) or Injectable (1) depending on
the mode of administration of tha drug. Four clasdfication tasks ae defined from this datasd: between
Ora and Absorbent D1, between Oral and Topical D2, between Ora and Injectable D3 and between Oral
and everything else (Topical + Absorbent + Injectable) asD3. This datasd is particularly different from the
red, in tha wetry to distinguish between the 1728marketed drugs with different modesof administration.

Ancther datase usdl in this study is the MAO (Monaamine Oxidase datase [7]. The compounds of
this dataset have been categorized into four different classeq0, 1, 2 and 3) basal onthelevels of adivity,
with the lowved labeled as0 and the higheg labeled as3. We define three dassfication problemsbaseal on
this dataset: M1 with paositive dass @mpounds aslabels 1, 2 and 3and negative dass as ompounds with
label 0, M2 with paositive dass adabels 2 and 3and negative dass @mpounds aslabels 0 and 1, and finally
thelast problem M3 with paositive dass mmpounds aslabel 3 and red of the mmpounds in negative dass

The red of the datasés are derived from the PubChem website tha pertain to the cacer cdl lines[24].
Twelve datasds are sdected from the bioassg records for cancer cdl lines Ead of the NCI anti-cancer



Table 2: Desgiption of NCI cancer saeen datasds.

Name (Bioassay-ID or AID)  Description

NCI-H23 (NCI1) Human tumor (Non-Smadl Cell Lung) cdl li ne growth inhibition assay
OVCAR-8 (NCI109 Human tumor (Ovarian) cel li ne growth inhibiti on assay

MOLT-4 (NCI123 Human tumor (Leukemia) cel li ne growth inhibition assay

SN12C (NCI145 SN12C Renal cdl li ne

Yeast anti-cancer (NCI167) Yeast anti-cancer screen bub3strain

CD8F1 (NCI220 In Vivo Anticancer Screen Tumor model Mammay Adenocarcinoma
UACC257(NCI33) Humen tumor (Melanoma) cel li ne growth inhibition assay

P388in CD2F1 (NCI330) In Vivo Anticancer Screen tumor model P388 L eukemia (intraperitoned)
PC-3 (NCl41) Humen tumor (Prostate) cdl li ne growth inhibition assay
SF295(NCI47) Human tumor (Central Nervous System) cdl li ne growth inhibiti on assay
SW-620(NCI81) Humean tumor (Colon) cdl li ne growth inhibition assay

MCF-7 (NCI83) Human tumor (Breast) cdl li ne growth inhibition assy

saeas formsa dasdficaion problem. The datasds that are séected belongto 12 dfferent typesof cancer
saea. Since thee is more than one saeen available for any particular typesof cancer (for example colon
cancer, breas cancer etc.), we decidal to use the seen that had most number of compounds tested onit.
The dasslabels onthesedatasds iseither adive or inadive and we used theorigina classlabels as®ciated
with eadh compound Table 2 provesdetails of the 12 dfferent bioassgs used for this study.

All thedatasdsrequired somedata cleaning asfor someof the mmpounds we were unable to generate all
of the s@en desciptor spaces All such compoundswere removed from ther repedive datases. This made
the sés of compounds used for different desciptors exadly the sane and allowed oljective comparison of
the s@en desciptor spaces

6.2 Experimental Methodology

The dasdficaion reaults were obtained by performing a 5-way crossvalidation onthedatase, ensuring that
the dassdistribution in ead fold is identical to the original datasd. In ead ore of the qossvalidation
experiments, thetest-se¢ wasnever considaed and the algrithm used orly the training-se to generate the
desciptor spacerepresantation and to build the dasdficaion model. The exad sanetraining and test sds
were used in desciptor generation and crossvalidation experiments for al the different schemes. For the
SVM classfier we used the SYMLight library [17] with al the default parameter setings except thekernel.
The performance of the newly developed desciptor spaceswas @mpared againg the desciptors gen-
erated by fingerprints, MaccsKeys, Cycles & Trees and frequent sub-structures For fingerprints, we used
Chemaxon's fingerprint program cdled Screen [14]. We experimented using 256, 512, 1024, 2048,
4196 and 8192bit length fingerprints. We used default setings of thetwo parameers. number of bonds
or maximum length of the pattern generated (up to seven) and number of bits se by a pattern (threg. We
foundthat 8192bits produced better reaults (even thoughther performance alvantage wasnat statistically
signifi cant compared to 2048 and 4196hit fingerprints). For this rea®n, we use8192hit fingerprintsin all
the mmparisons gaing other desgciptors. To generate MDL Maccskeys (166 keys) we use theM OE suite
by Chemical Computing Group[11] For Cyclic patterns and Trees we use1000as theupper bound onthe
number of cycles to be enumerated asdescibed in [13]. To generate frequent sub-structures we use the
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FSG algorithm descaibed in [21]. Table 3 contains thevaluesof o used for paositive and negative dasses in
ead datasd.

In the ontext of fp-8192the only kernel applicable is the binary and poded () extension of RBF
and Tanimoto kernels. This is becaisehashed fingerprints are inherently binary and nd provide frequency
information. In the cmntext of MK, only two kernels (K, and K ¢) are gpplied. Also for the RBF kernel, we
normdize thevectas tobe unit length prior to learning the SYM models. We foundthat this normdization
lead to somewhat better reaults.

Table 3: Suppat valuesfor FS
Datasets o_-% o4+% Datasets o_-% o4+%

NCI1 50 7.0 Al 5.0 30
NCI109 40 40 H3 80 80
NCI123 40 50 D1 5.0 100
NCI145 40 6.0 D2 50 320
NCI167 20 20 D3 5.0 100
NCI220 50 80 D4 50 120
NCI33 40 40 P1 30 30
NCI330 40 80 P2 30 30
NCI41 40 6.0 P3 30 30
NCl147 40 50 P4 3.0 30
NCI81 50 6.0 C1 20 20
NCI83 40 4.0 M1 15 175
H1 80 50 M2 145 15
H2 80 80 M3 125 30

6.3 Performance Asssanent Measures

The dassfication performance was assessidby computing the ROC50 values[10], which is the aeaunder
the ROC curve up to thefirst 50 false positives This is a much more gopropriate performance assessent
meaaure than traditional ROC valuefor datasds with very smdl positive dasses This is becausefor such
problem setings, a use will most likely stg examining the higheg saoring predictions as son ashe/she
starts encourtering a cetain number of false positives[10].

We assess thebdity of a particular desciptor sd to identify positive compounds in the ontext of
database soeening experiment by looking at thefradion of positive compounds tha were recmvered in the
top k hits. Spedficdly, wereport thefradion of positivesrecvered in the t@ & hits in a database speaning
experiment in which every positive compoundis usal asquery. We cdl this meric normalized hit rate
(NHR) and it is computed asfollows. Suppcse N is the number of compounds in adatase, N is the
number of paositive (adive) compounds in tha datase and hitsy, is the number of paositivesfoundin the tq
k hits over all queries. Then, thenormdized hit rate isgiven by

hitsk

NHR = .
(kN4)

(6)

To compare theperformance of a sd of schemes agoss thedifferent datasds, we cwompute a uImmay
statistics tha we refer to as theAverage Relative Quality to the Bed (ARQB) asfollows: Let r; ; be the
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ROCS50 (NHR) value atieved by the stieme j onthedatasé ¢, and let r; be themaximum (i.e. the bed)
ROC50 (NHR) value abieved for this datase over al the sdiemes. Then the ARQB for schemej is equal to
. (Zi T;;j ) , Where T' is thenumber of datases. An ARQB valueof one indicates tha the stiemeacieved
thebed reaults for al thedatases compared to theother schemes, anda lov ARQB value irdicates apoaly
performing scheme.

We used the Wilcoxoris paired signed-rank test [16] to compare the s$atistical significance of any two
desciptors basal onthe performance measuresdescibed abowve. This test takes into acourt not only the
sign of differencesbut also magnitude of thesedifferences It is generally amore powerful test than student
t-test egedally for smdl number of samples with unknawvn distributions. A p-value of 0.01 is usel as
threshold for all comparisons.

6.4 Sensitivity on the Length of AF Descriptors

To evaluge theimpad of thefragment length in the dasdficaion performance adieved by the AF descip-
tors, we performed a study in which we varied the maximum fragment length [ from two to seven bond.
The reallts of this study are shown in Table 4. Theseresults were obtained using the K Tanimoto-base
kernel, which aswill be shown later, is one of thebed performing kernels.

Table 4: ROC50 reailts for the Tanimoto K% kernel for different lengthsusing AF desciptors.

D upto upto upto upto upto upto

=2 [=3 [I=4 1I=5 1=6 1=7
NCI1 0282 0282 Q0297 Q305 Q312 Q317
NCI109 0266 0266 Q0278 0285 Q290 Q296
NCI123 0246 0246 0256 Q0259 Q264 Q262
NCI145 0292 0292 Q306 Q319 Q328 (334
NCI167 Q061 Q061 Q062 Q064 Q064 Q065
NCI220 0252 0252 0247 Q244 Q240 Q238
NCI33 0268 0268 0289 Q306 0314 0318
NCI330 0327 0327 Q338 Q343 Q343 Q341
NCl41 0311 Q0311 Q329 Q0340 0350 0355
NC147 0269 0269 0284 Q294 Q302 Q305
NCI81 0269 0269 Q277 Q0286 Q272 0294
NCI83 0293 0293 Q306 Q314 0316 0316

H1 0256 Q0256 0262 0267 Q271 Q274
H2 0603 0603 0615 0624 0634 Q641
Al 0138 Q138 Q0154 0170 0201 Q203
H3 0602 0602 0613 0620 0626 Q632
D1 0324 Q0324 Q0340 0357 0363 Q374
D2 0552 0552 0566 Q577 Q580 0583
D3 0509 0509 0518 (0528 (0532 0534
D4 0466 0466 0479 0485 0489 0490
P1 0586 0586 0588 (0589 0596 0598
P2 0516 0516 0514 0506 0501 Q500
P3 0551 0551 0553 0554 0555 0553
P4 0634 0634 0642 0649 0651 0653
C1 0776 Q795 Q798 (0807 (0813 0818
M1 0446 Q446 Q0443 0439 0436 0438
M2 0623 0623 0618 0611 0612 Q616
M3 0775 Q775 Q773 Q770 Q773 Q777

ARQB 0930 0931 Q955 Q973 Q985 Q995

From thesereallts we can see thathe dassficaion performancetends toimprove asl increasesandthe
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Table 5: Numbers of AF for different lengths/.

# of fragments runtime (in se¢
D =3 l=5 =7 forl="17
NCI1 6258 95835 1033757 1022
NCI109 6286 96124 1035681 1007
NCI123 6177 94701 1021345 1008
NCI145 6258 95403 1027123 998
NCI167 8537 123165 1250149 1338
NCI220 1568 13082 82992 22
NCI33 6203 95105 1026732 1030
NCI330 7378 101201 954487 796
NCI41 5313 80157 835764 724
NCl47 6237 95552 1030241 1028
NCI81 6278 95900 1035657 1015
NCI83 5349 80674 840101 716
H1 14369 170230 1389487 1312
H2 14248 168488 1371833 1251
Al 3231 66357 725401 434
H3 2757 23655 137779 61
D1 2127 18888 103159 26
D2 2118 18540 100798 28
D3 2243 20575 117385 35
D4 2336 21636 123910 42
P1 1217 7968 37164 8
P2 1238 8098 37914 9
P3 1239 7959 36774 8
P4 1239 8004 37243 8
C1 1135 6495 29110 6
M1 1301 9531 38812 10
M2 1301 9531 38812 10
M3 1301 9531 38812 10

Due to space onstraints we omitted the results for [ equal to 2, 4 and 6

schemetha useupto length seven fragments achieve thebeg overall performance Most of thesedifferences
are datistically significant with theonly exception being! = 2 and! = 3, which are not statistically different
for p = 0.01.

Table 5 shows thenumber of agyclic fragments of various length tha were generated for ead datasH,
aswell as thetime required to generate the fragments of length seven. Thesereaults show that the number
of fragments does ingease onsidaably with [, which essatially putsapradica upper bound orthelength
of the fragments that can be used for clasdficaion. In fad, for | = 8 (nat shown here), the number of
fragments were abou three tofive times more than tha for I = 7, which made it impradical to build SVM-
baseal clasdfier for many of the datasds. However, on the paositive side the anount of time required to
generate thesefragments is quite smal, and is significantly lower than tha required for learning the SVM
models.

6.5 Effedivenessof Different Kernelsfor AF Descriptor

Table 6 shows the dassfication performance of the different kernel functions descibed in Sedion 5for the
AF desciptors. Thesereaults were obtained for AF desciptors containing fragments of length up to seven.

Two key obsevations can be made from analyzing thesereaults. First, the dassficaion performance
obtained by the Tanimoto-basel kernel functionsis in general higher than tha obtained by the RBF-basel
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Table 6: ROC50 valuesfor the AF desciptors using kernels derived from Tanimoto and RBF.
Tanimoto RBF
Datasets (Kp) (Ky) (KF) (KF)  (Kp) (Ky) (Kf) (KF)
NCI1T 0312 0313 0304 0.317 0.303 0286 Q305 0271
NCI109 Q296 0.297 0297 0.296 ~ 0271 0265 0292 0256
NCI123 0253 0253 0251 0.262  0.252 Q241 0247 0235
NCI145 Q330 Q330 0323 0.334  0.283 0293 0322 0284
NCI167 Q062 Q063 Q062 0.065 0.060 Q061 Q062 Q059
NCI220 0230 Q221 0254 Q238 Q266 0281 0263 0.299
NCI33 0311 0311 0303 0.318 0.285 0288 Q304 0288
NCI330 0320 0320 0321 0.341 0301 Q302 Q317 Q309
NCI41 0353 0353 0347 0.355 0.316 0314 0346 Q306
NCI47 0302 Q303 0296 0.305 0.277 0271 Q295 0263
NCI81 0288 0288 0284 0.294 0.263 0266 0284 0253
NCI83 0303 0302 0303 0.316 0.280 0272 Q301 0276
H1 0268 0265 0263 0.274  0.258 0214 0264 0230
H2 0.645 0.643 0634 0641 0581 0577 0636 Q567
Al 0180 0.207 0.188 0203 Q178 Q185 Q195 0186
H3 0634 0.635 0.630 0632 0610 0603 Q631 0601
D1 0.377 0.369 0356 0374 0354 (342 Q357 Q329
D2 0577 0586 0.604 0583 0551 Q0545 Q592 Q572
D3 0504 Q501 Q509 0.534  0.493 0486 Q506 0491
D4 0466 0471 Q480 0490  0.445 Q434 Q470 0443

P1 0.597 0.610 0.608 0598 Q0572 0563 0599 Q576
P2 0.498 Q505 0.507 0.500 Q492 Q486 Q500 Q497
P3 0567 0574 0.587 0.553 (0552 Q540 0582 Q559
P4 0.624 0632 0628 0.653 0.620 Q617 Q625 Q611
C1 0.810 0811 0805 0818 0812 0.820 0.815 Q819

M1 0.432 Q434 0.444 0.438 Q417 Q423 Q439 Q440
M2 0.610 Q605 0607 0.616  0.584 0592 0606 Q608
M3 0.788 0.775 Q774 Q777 Q758 Q754 Q773 Q750
ARQB1 0.970 Q976 Q973 Q990

ARQB2 0.951 Q940 Q994 0942
ARQB3 0.965 Q970 Q967 Q986 Q923 Q912 Q965 Q914

Best performing scheme(s) for ead classficaion problemis shown in bdd. ARQBL1 isthe ARQB using Tanimoto-based kernels only, ARQB2 is
ARQB using RBF-based kernels only and ARQB3 is the ARQB cdculated using bah Tanimoto- and RBF-based kernels.

kernels. This reallt is to alarge extent in agreanent with thewidely acceted oginion within the cheminfor-
matics community tha Tanimoto coefficient is agoodsimilarity measurefor chemical compounds[36]. Sec
ond, the beg performing kernel function among thosebasel on Tanimoto, is thelC} (length-differentiated-
frequency vectas), which is different from the bed performing kernel function in the casef RBF, which is
IC; (length-differentiated-binary vectass). However, for bath dassesof kernels, giving equal weightsto the
fragments of various lengthsleads to better reaults.

Note that basel on the Wilcoxon statistical test of p = 0.01, the differencesbetween Ky and K3 for
Tanimoto are nat significant, but IC;@ is statistically better than K, and K. Also, in the caseof RBF, £ is
statistically better than the other threg which are satistically equivalent among them.

6.6 Comparison with Previously Developed Descriptor Spaces

6.6.1 Clasdfication Performance

To compare the d¢asdfication performanceof the AF desciptor space gaind the dassfication performance
of thefour previously developed desciptor spaces(fp-8192 MK, CT, and FS) and the TF and PF subsés
of AF (descibed in Sedion 4) we performed a seies of experiments in which we usel the various kernels
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descibed in Sedion 5to dassgfy thevarious datasds. Table 7 and 8 show the ROC50 reallts achieved by
thebed kernels for ead desciptor space In addition, Table 9 shows weathe or not these sbhemes adieve
ROCGH0 reallts tha are datistically different from ead other. The reaults for AF, TF, and PFwere obtained
for fragments up to length seven.

Thesereallts show tha the AF desgciptors lead to ROC50 reaults that are datistically better than that
achieved by all other previously developed schemes, for both the Tanimoto and RBF-basel kernels. In
addition, the performance adieved by bah TF and PFis aso goodand in general better than tha achieved
by the ealier approaches

Comparing between fp-8192 CT, MK, and FS, we can see thathefingerprint-baseal desciptors adieve
the bed overal reailts, whereasMK and CT tend to perform theworst. However, from a gatistical signifi-
cance gsandpant CT, MK, and FSare equivalent.

Ancther intereding obseavation is that the PFscheme achievesbetter reaults than fp-8192(even though
the difference is nat significant at p = 0.01 but it is at p = 0.05). Since thefp-8192 dsciptors were
also generated by enumerating pathsof length up to seven (and also cycles), the performance difference
suggeds tha the folding that takesplace due to thefingerprint’s hashing approach negatively impads the
classfication performance.

Finally, comparing Tanimoto- with RBF-basel kernels, we can see thatheformer doesbetter andthese
differences ae ingeneral statistically significant at p = 0.01.

6.6.2 Retrieval Performance

We dso compare the & edivenessof thedifferent desciptor spacedor thetask that is commanly referred to
as adatabase speening [35]. The goal of this is given a mmpoundtha hasbeen experimentally determined
to be adive, find aher compounds from a database thaare adive aswell. Since the ativity of a chemical
compound aepends onits malecular structure, and compounds with similar molecular structure tendto have
similar chemical function, this task essatially maps toranking the mmpounds in thedatabasebasel on hav
similar they are to thequery compound

In our experiments, for ead datase we usad ead of its adive compounds as aquery and evaluaed the
extent to which the various desciptor spaces alag with the kernel functions studied in this paper lead to
similarity measures tha can succeséully retrieve theother adive compoundk.

Asit waswith the stuly preseanted in the previous setion, our experimental evaluaion was @mprehen-
sive using al possibde combinations of desciptor spaces ad kernel functions. Table 10 and Table 11 show
the NHR reaults achieved by the beg kernels for ead desciptor space whereasTable 12 shows the etent
to which therelative performance of various stiemes ae datistically significant.

Comparing thesereaults with thosefor the dassficaion task shows dmilar trends with resped to the
relative performance of thevarious desciptor spaces For both Tanimoto- and RBF-basel kernels AF statis-
tically outperformsthepreviously developed schemes. The only exception is with regped to theCT descip-
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Table 7: ROC50 valuesfor the s&en desciptors using kernels derived from Tanimoto.

Datasets AF TF PF fp8192 CT MK FS

(K3 (K (Kp) (Kp) (Ky) (Kp) (Kp)
NCIT 0317 0314 Q309 0277 0266 0231 Q263
NCI109 0.296 0.293 0287 0269 0235 0225 0238
NCI123 0.262 0.255 0253 Q242 Q228 Q219 Q240
NCI145 0.334 0333 0323 0278 Q270 Q232 Q265
NCI167 0.065 0.060 Q063 Q060 Q047 Q049 Q054
NCI220 0238 Q250 Q241 0258 Q208 0.441 0.217
NCI33 0318 0311 Q306 0260 0243 Q220 Q251
NCI330 0.341 0321 Q319 0329 Q315 Q178 Q242
NCI41 0355 0357 0.345 Q310 Q275 Q251 Q300
NCI47 0305 0.306 0.296 0268 0235 Q228 0243
NCI81 0294 0289 0291 0262 0238 0232 0239
NCI83 0316 0315 Q304 Q274 Q262 Q229 0267

H1 0.274 0270 0266 0258 0232 Q0224 (228
H2 0.641 0.638 0.641 0.600 0571 0562 Q581
Al 0.203 0.183 0183 Q138 Q138 Q134 Q147
H3 0.632 0630 0.637 0.614 0599 0586 Q576
D1 0374 0.387 0.374 0368 (311 0318 Q327
D2 0.583 0.550 0573 0.583 0.547 Q559 Q507
D3 0.534 0.522 Q493 Q500 0460 Q440 Q474
D4 0490 0477 Q461 0461 0439 Q391 Q399
P1 0598 0591 0592 0576 0558 0569 Q546
P2 0500 0508 Q501 0.537 0.499 0526 Q459
P3 0553 0539 0571 0569 0506 0544 Q552
P4 0.653 0.622 0621 0566 0554 Q558 Q590
C1 0818 0816 0816 0.829 0.751 Q793 0818
M1 0438 0419 Q425 0.453 0.347 0413 Q409
M2 0.616 0.586 0595 0600 Q0490 0592 Q604
M3 0.777 Q782 Q782 Q777 Q745 Q789 0.801

ARQB 0975 Q956 Q950 Q909 0829 0827 0846

Best performing scheme(s) for ead classficaion problem is hown in bdd. AF refers to Acyclic fragments, TF to Treefragments, PF to Path
fragments, fp-8192refers to fingerprints of length 8192 lits, CT to Cycles & Trees, MK to Maccs keys, and finally FSto frequent substructures.

tor space ad RBF for which AF's higher average performanceis nat statistically significant at p = 0.01 but
it isat p = 0.05. Also the average performance of the TF and PF desciptors (asmeasuired by AQRB) is
higher than ealier schemes aswell.

7 Conclusion & Discusson

In this paper we preseted a new classof desgciptors for represeanting molecular graphs tha are basal on
conreded agyclic fragments and illu strated their eff edivenessfor thetasks of building classfi cation models
and retrieving adive compounds from chemical libraries.

This work wasprimarily mativated by ou desre to understand which ageds of the malecular graph
are important in providing eff edive desciptor-baseal represeatations for the dowve two tasks given the four
design choicesdescibed in Sedion 4 (datasd spedficity, fragment complexity, predseness and coverage)
and the fad tha no scheme including AF, leads to adesciptor space thais strictly superior (in terms of
what it captures to thereg of the stiemes. Each ore of the s&en desciptor spaces(AF, TF, PF, fp-n,
MK, CT, and FS) make ame compromises alag at leag one of thesedimensions. We believe thda our
experimental reaults help in providing some answers. Spedficdly, the reaults comparing PF and fp-8192
sugees tha a predse representation is a key property and helps PF outperform fp-8192 even thoughthe
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Table 8: ROC50 valuesfor the s&en desciptors using kernels derived from RBF.

Datasets AF TF PF fp8192 CT MK FS

(Kp) () (K)  (Ke)  (Kp) (Kyp) (Kp)
NCIT 0305 0302 0303 0198 0256 Q192 0249
NCI109 0292 0.293 0.288 Q199 0228 Q202 0232
NCI123 Q247 Q240 0249 0177 Q223 Q173 0234
NCI145 0322 0321 Q317 0203 Q255 Q194 Q258
NCI167 0.062 Q062 0.053 Q043 Q041 Q043 Q047
NCI220 0263 0266 Q261 Q272 (0218 0.393 0.198
NCI33 0304 0.297 0286 Q186 0238 Q210 Q242
NCI330 0.317 0.306 0311 0235 Q305 Q241 Q241
NCI41 0346 0344 0344 Q237 Q267 0213 0294
NCI47 0295 0.271 0289 Q194 0232 Q186 0227
NCI81 0284 Q279 0.286 0.188 0230 Q194 Q231
NCI83 0.301 0.298 Q300 Q197 0258 Q204 0253

H1 0264 0259 0.265 0.229 0223 0233 0220
H2 0.636 0.629 0635 Q573 0556 Q545 Q575
Al 0195 Q167 0.212 0.125 Q128 Q062 Q123
H3 0631 0628 0.632 0.578 0589 0584 Q554
D1 0357 0.362 0.358 (0345 0317 Q340 Q307
D2 0.592 0.571 0545 0567 0558 Q551 Q486
D3 0506 0497 0.507 0.430 0454 Q424 Q0482
D4 0470 0.458 Q460 0401 Q426 Q380 Q400
P1 0599 0.604 Q604 0.544 (0542 0563 Q553
P2 0500 0468 0492 0.532 0.493 0512 Q465
P3 0582 0458 Q0580 0553 Q499 0.583 0.558
P4 0.625 0.605 0622 0542 0559 0536 0594
C1 0.815 0.810 Q808 0794 Q744 0.815 0.813

M1 0439 0414 Q429 0428 0343 Q411 Q410
M2 0.606 0.573 Q600 0567 Q484 Q577 Q584
M3 0.773 Q779 Q768 0785 Q749 0.788 0.775
ARQB 0981 Q0951 0968 0805 (0835 Q803 0845

Best performing scheme(s) for ead classficaion problem is shownin bdd.

former utilizesonly path-basel fragments, whereasfp-8192also usesfragments corregpondng to cycles.
Similarly, thereaults comparing AF againg FS sugged tha the 100% coverage of AF is a aitical property
asit helpsoutperform theFSapproac, which leads todeseiptor spacesvith much more complex fragments
(i.e., arbitrary conneded substructureg. Also, thereaults comparing the sdiemes thd utiliz e datase spedfic
fragment discovery approadhes ajaing the MK scheme show that relying on pre-identified fragments will
lead to lower performance. Finally, the reaults comparing AF againd TF and PF show tha everything else
being the sane, more complex fragments do lead to better reallts; however, thesegains ae not substantial.

The work in this paper has been primarily focused on classficaion approadies basel on deseiptor
spaces However, ancthe approach wasrecantly invegigated by Kashima et al [18] tha uses arandam-
walk basel approach to diredly construct akernel function between two graphs. The experiments preseted
in [18] showed promising reaults (even thoughthey are worse tha those reported in this paper for the
comman datasds), andwe believe thd such dired graph kernels couged with informaion as towhat agpeds
of themaecular graphs ae important, can paentially lead to eff edive dassficaion algorithms

Findly, the fad tha agyclic fragments, and tree fragments in particular, can be useul in classfying
chemical compounds, hasbeen known for quite awhile. Palyulin and his collaboratars [31, 38] used certain
typesof treefragmentsfor clasdficaion andreported goodreallts for QSAR and QSR prediction problems
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Table 9: Wilcoxonstatistical test for the s@en desciptors in Table 7 and Table 8.

Tanimato
AF TF PF fp8192 CT MK FS WIEL RBF

AF > > > > > > 6/0/0 AF TF PF fp-8192 CT MK FS WI/EL
TF < = = > > > 3/2/1 AF > > > > > > 6/0/0
PF < = = > > > 3/2/1 TF < = > > > > 3/2/1
fp-8192 < = = > > > 3/2/1 PF < = > > > > 3/2/1
cT < < < < = = 0/2/4 fp8lR2 < < < = = = 0/2/4
MK < < < < = = 0/2/4 CT < < < = = = 0/2/4
FS < < < < = = 0/2/4 MK < < < = = = 0/2/4

FS < < < = = = 0/2/4

Thesign‘>" denotes that row outperforms column descriptor, ‘ <’ denates that column outperformsrow descriptor and ‘=" denctes that row and
column descriptors are stetisticdly indistingushable. W/E/L is Wins, Equal, and Losses for eat scheme.
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Table 10: NHR for k£ = 10 using kernels derived from Tanimoto

Datassts AF TF PF fp8192 CT MK FS

(Kp) (Kp) (K7) (Ko) (Kp) (Kf) (Ks)
NCI1 0493 0477 Q479 0467 Q400 0438 0443
NCI109 0481 0473 0467 Q457 Q378 0435 0439
NCI123 0448 0438 0440 0431 Q367 0284 Q408
NCI145 0751 0.737 Q731 0683 Q668 0678 0686
NCI167 0704 0.676 Q690 0679 Q675 0656 Q690
NCI220 0328 0335 Q328 Q310 0329 0.445 0.328
NCI33 0436 0423 0429 0416 0346 0391 Q379
NCI330 0512 0479 0492 Q507 Q437 0435 0436
NCI41 0476 0469 Q473 0455 Q378 0453 0443
NCI47 0491 0485 Q474 Q457 0388 0452 0384
NCI8L 0483 0471 0476 0465 0393 0369 0438
NCI83 0477 0472 Q470 Q461 Q390 0335 Q444

H1 0.366 0.367 0.358 Q351 0352 Q304 Q326
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M1 0.387 0.379 0380 (382 Q307 Q369 0328
M2 0422 0408 0.447 0413 0297 Q400 Q394
M3 0520 0453 0.557 0.501 Q426 Q508 Q508

ARQB 0.961 Q961 Q0946 Q926 0883 Q893 0886

Best performing scheme(s) for eat classficaion problemis shown in bdd.
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Table 11: NHR for k£ = 10 using kernels derived from RBF

Datasets AF TF PF fp8192 CI MK FS

(o) (Ky) (Ko)  (Ke) (K7) (Ky) (K3)
NCIL 0477 0472 Q474 Q464 Q404 0439 0430
NCI109 0470 0468 Q463 0455 Q375 0434 0436
NCI123 0431 0434 Q434 0430 Q373 0287 Q415
NCI145 0733 0729 Q723 Q703 Q677 0685 Q676
NCI167 0686 0668 Q677 Q672 Q639 0639 0676
NCI220 Q340 0338 0337 0327 0335 0425 0.361
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Table 12: Wilcoxonstatistical test for thefour schemes in Table 10 and Table 11

Tanimoto
AF TF PF fp8192 CT MK FS W/EL RBF

AF = = > > > > 4/2/0 AF TF PF fp8192 CT MK FS WI/EL
TF = = = > > 3/3/0 AF = = > = > > 3/3/0
PF = = = = > > 2/4/0 TF = = = > > > 3/3/0
fp-8192 < = = = = > 1/3/2 PF = = > = > > 3/3/0
cT < < = = = = 0/3/3 fp8l2 < = < = > > 2/2/2
MK < < < = = = 0/3/3 CT = < = = = = 0/5/1
FS < < < < = = 0/2/4 MK < < < < = = 0/2/4

FS < < < < = = 0/2/4

Thesign‘>’ denotes that row scheme outperformscolumn scheme, * <’ denotes that column scheme outperformsrow schemeand ‘=" denotes that
row scheme and column scheme are statisticdly indistingushable. W/E/L is Wins, Equal and Losses for ead scheme
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